罗英武课题组

您的位置:罗英武课题组 > 教师

个人主页请点击访问:https://person.zju.edu.cn/0009128


高翔 副教授,博士,博导

化学工程联合国家重点实验室(浙江大学)
浙江大学化工系聚合与聚合物工程研究所
地址:杭州市浙大路38号第十教学大楼4015B房间 (邮编:310027)
电话:0571-87951280
传真:0571-87951612
电子邮件:
gaox@zju.edu.cn

IMG_20171116_180435.jpg

简历

200911-今,浙江大学化学与生物工程学院
2005
-2009年,McMaster University,加拿大,博士
2002
-2005年,天津大学,硕士
1998
-2002年,天津大学,学士

 

研究兴趣

电子化学品开发

锂离子电池材料研究

聚合物新材料研发

微通道及连续流反应

人工智能

精细化学品工艺开



 

 

人工智能自优化实验系统设计

人工智能.png

微反应器工艺研究


微反应器.jpg

3D打印多形状记忆智能材料

 多形状记忆智能材料的设计及制备

 

 

基于新型电极粘结剂动力锂电池


ͼƬ1.jpg

聚烯烃锂电池隔膜挤出拉伸加工

主要在研项目


本征可弹性拉伸锂离子全电池制备及其结构与性能实时分析(国家自然科学基金项目)

导电、导离子、高粘弹性理想电极粘结剂的制备与性能研究(国家自然科学基金项目)

聚合物分子链梯度结构设计实现多形状记忆功能的研究(国家自然科学基金项目)

活性自由基高内相(细)乳液聚合过程研究(国家自然科学基金项目)

解决高比容量锂离子电池寿命过短问题的关键技术研究(浙江省科学技术厅课题)

活性自由基乳液模板聚合法制备高性能聚合物多孔隔膜(教育部博士点基金)

聚合物锂离子电池凝胶电解质的研究(浙江省科学技术厅课题)

辐照交联动力锂电池隔离膜材料的研究(浙江省科学技术厅课题)

 

 授权专利:

  

1.        一种基于硅的锂离子电池负极,ZL 201810122407.X,授权日期:20201229日,高翔,魏迪锋,罗英武

2.        一种窄分子量分布的多嵌段共聚物及其制备方法, ZL 201910285998.7,授权日期:2020428日,方进伟, 罗英武,高翔,李伯耿

3.        一种锂离子电池可拉伸电极及其制备方法,ZL201710771001.X,高翔,周傲,罗英武,授权日期: 20191231

4.        一种嵌段共聚物/碳纳米管复合导电弹性体的制备方法, ZL201710770987.9,周傲,高翔,罗英武,授权日期:20190723日,

5.        一种采用嵌段共聚物胶乳制备多相聚合物材料的方法,ZL201710548047.5,高翔,李宏泽,罗英武,授权日期:2019419

6.        一种基于硅的锂离子电池负极及其制备方法,ZL201610142109.8,高翔,张帆,罗英武,授权日期:20190205

7.        一种高比能量密度锂离子电池,ZL201610600899.X,高翔、张帆、罗英武、郑哲楠,授权日期:2019528

8.        一种锂电池用可热交联聚合物电解质膜的制备方法, ZL201610270636.7,郑哲楠,黄杰,高翔,王永常,罗英武,授权日期:20180508

9.        Block copolymer comprising a block with glass transition temperature higher than 100°C and method for preparing the same,美国专利 US 9,920,156 B2,许少宏,高翔,罗英武,授权日期:2018320

10.    一种硫正极用水基电极粘结剂及制备方法ZL201610832622.X,高翔,李丽红,罗英武,朱世平,授权日期:2018427日,

11.    一种水基电极粘结剂及制备方法,ZL201610671015.X,高翔,郑哲楠,罗英武,张帆,授权日期:201822

12.    嵌段共聚物增韧剂及制备方法与应用,ZL201510297485.X,朱月,高翔,罗英武,授权日期:2018112

13.    基于嵌段共聚物的丙烯腈-苯乙烯-丙烯酸酯韧性树脂的制备方法,ZL201510393636.1,黄杰,高翔,罗英武,授权日期:20171031

14.     Poly((meth)acrylic acid-b-styrene-b-butadiene-b-styrene) block copolymer  latex and method for preparing the same, 美国专利,专利号 US 9,328,234 B2,罗英武,魏任重,高翔,授权日期:201653

15.     ((甲基)丙烯酸-b-苯乙烯-b-(异戊二烯-co-丁二烯)-b-苯乙烯)嵌段共聚物胶乳及制备方法,ZL201410269519.X,高翔,罗英武,授权日期:2016824

16.     Method for preparing porous anti-reflective thin film composed of hollow polymer nanoparticles, 美国专利,专利号 US 9,180,486 B2, 孙志娟,高翔,罗英武,授权日期:20151110

17.     一种辐照交联锂离子电池隔膜及其制备方法, ZL201310196439.1高翔、盛伟、 李伯耿、罗英武、林叶刚、王永常,授权日期:2015429

18.     含玻璃化温度高于100oC嵌段的嵌段共聚物及制备方法,ZL201210243061.1,许少宏,高翔,罗英武,授权日期:2014716

19.     高内相乳液可逆加成断裂链转移聚合制备多孔材料的方法,王安妮,高翔,罗英武,ZL201110370935.5授权日期:201464

20.     一种V型梯度共聚物及其制备方法, ZL201210387662.X,郭云龙,高翔,罗英武,授权日期:2014416

21.     聚苯乙烯-b-聚丁二烯嵌段共聚物纳米胶乳及其制备方法,ZL201210084866.6,魏任重,高翔,罗英武,授权日期:2014129

22.     由聚合物纳米中空胶囊制备超级绝热聚合物材料的方法,ZL201110289648.1,罗英武,高翔,叶长怀,授权日期:201387

23.     聚((甲基)丙烯酸-b-苯乙烯-b-丁二烯-b-苯乙烯)嵌段共聚物胶乳及其制备方法,ZL201210067021.6,罗英武,魏任重,高翔,授权日期:2013925

24.     聚((甲基)丙烯酸-b-丁二烯)嵌段共聚物及其制备方法,ZL201110119838.9,魏任重,高翔,罗英武,授权日期:20121114



 

代表性论文

[1]         Zhang, F.; Luo, Y.; Gao, X.*; Wang, R., Copolymerized Sulfur with Intrinsically Ionic Conductivity, Superior Dispersibility, and Compatibility for All-Solid-State Lithium Batteries, Acs Sustainable Chemistry & Engineering, 2020, 8, 12100-12109.

[2]         Yang, Z; Luo, Y.; Gao, X.*; Wang, R.*, High-Safety All-Solid-State Lithium-Ion Battery Working at Ambient Temperature with In Situ UV-Curing Polymer Electrolyte on the Electrode, Chemelectrochem, 2020, 7, 2599-2607.

[3]         Yang, C.; Gao, X.; Luo, Y.*, End-block-curing ABA triblock copolymer towards dielectric elastomers with both high electro-mechanical performance and excellent mechanical properties, Chemical Engineering Journal, 2020, 382, 123037.

[4]         Fang, J.; Gao, X.*; Luo, Y.*, Synthesis of (hard-soft-hard)(x) multiblock copolymers via RAFT emulsion polymerization and mechanical enhancement via block architectures. Polymer, 2020, 201, 122602.

[5]         Jin, J.; Gao, X.; Luo, Y.*, Dielectric elastomer film with anisotropic actuation deformation on film plane. Journal of Applied Polymer Science, 2020, 137, 48795

[6]         Zheng, Z.; Gao, X.*; Luo, Y., Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries. Colloid and Polymer Science 2019, 297, 1287-1299.

[7]         Li, H.; Luo, Y.; Gao, X.*, Preparation of Soft Shape Memory Polymer and Its Application as a Compliant Thermal-Triggered Gripper. Macromolecular Chemistry and Physics 2019, 220, 1900229.

[8]         Huang J.*, Luo, Y.; Gao, X.*, Morphology and mechanical properties of Acrylonitrile-styrene-acrylate toughened plastics with block copolymer chain structure. Polymer Engineering and Science 2019, 59, 389-395.

[9]         Wei, D.; Mao, J.; Zheng, Z.; Fang, J.; Luo, Y.; Gao, X.*, Achieving a high loading Si anode via employing a triblock copolymer elastomer binder, metal nanowires and a laminated conductive structure. Journal of Materials Chemistry A 2018, 6, 20982-20991.

[10]     Liu, D.; Wang, J.; Zhang, Y.; Liu, J.; Li, H.; Zhou, L.; Wu, S.*; Gao, X.*, Preparation of core-shell structured Au@SiO2 nanocomposite catalyst with Au core size below 2 nm without high-temperature calcination procedure. Journal of Materials Science, 2018, 53, 8086-8097.

[11]     高翔*; 国媛; 魏迪锋; 罗英武; 苏荣欣, 锂离子电池硅基负极黏结剂的研究新进展. 化工学报 2018, 69, 4605-4613.

[12]     高翔*; 叶向群; 朱明乔; 何潮洪, 比较教学法在化工原理实验课程教学中的应用. 实验室研究与探索 2018, 37, 215-218.

[13]     Zhou, A.; Sim, R.; Luo, Y.; Gao, X.*, High-performance stretchable electrodes prepared from elastomeric current collectors and binders. Journal of Material Chemistry A 2017, 5, 21550-21559.

[14]     Li, H.; Luo, Y.; Gao, X.*, Core-shell nano-latex blending method to prepare multi-shape memory polymers. Soft Matter 2017, 13, 5324-5331.

[15]     Wang, S.; Li, J. X.; Qi, M. F.; Gao, X.; Wang, W. J. *, Toward Maximizing the Mechanical Property of Interconnected Macroporous Polystyrenes Made from High Internal Phase Emulsions. Langmuir 2017, 33, 14295-14303.

[16]     李丽红; 王永常; 高翔*; 朱世平, 新型锂硫电池硫正极水基粘结剂的制备研究. 高校化学工程学报 2017, 3, 669-678.

[17]     Zheng, Z.; Gao, X.*; Luo, Y.; Zhu, S., Employing Gradient Copolymer To Achieve Gel Polymer Electrolytes with High Ionic Conductivity. Macromolecules 2016, 49, 2179-2188.

[18]     Li, H.; Gao, X.*; Luo, Y., Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks. Soft Matter 2016, 12, 3226-3233.

[19]     Zhu, Y.; Gao, X.; Luo, Y.*, Core-shell particles of poly(methyl methacrylate)-block-poly(n-butyl acrylate) synthesized via reversible addition-fragmentation chain-transfer emulsion polymerization and the polymer's application in toughening polycarbonate. Journal of Applied Polymer Science 2016, 133.

[20]     Yan, K.; Gao, X.; Luo, Y.*, Kinetics of RAFT Emulsion Polymerization of Styrene Mediated by Oligo(Acrylic Acid-b-Styrene) Trithiocarbonate. AICHE Journal 2016, 62, 2126-2134.

[21]     Yan, K.; Gao, X.*; Luo, Y.*, Well-Defined High Molecular Weight Polystyrene with High Rates and High Livingness Synthesized via Two-Stage RAFT Emulsion Polymerization. Macromolecular Rapid Communications 2015, 36, 1277-1282.

[22]     Yan, K.; Gao, X.*; Luo, Y.*, Correlation between polydispersities of molecular weight distribution and particle size distribution in RAFT Emulsion Polymerization of Styrene. Journal of Polymer Science Part a-Polymer Chemistry 2015, 53, 1848-1853.

[23]     Luo, Y.; Wang, A.-N.; Gao, X.*, One-pot interfacial polymerization to prepare PolyHIPEs with functional surface. Colloid and Polymer Science 2015, 293, 1767-1779.

[24]     Guo, Y.; Gao, X.*; Luo, Y.*, Suppressing the Long-Chain Branching in the Synthesis of Poly(styrene-b-butyl acrylate-b-styrene) in RAFT Emulsion Polymerization by Tuning the Interfacial Properties. Journal of Polymer Science Part a-Polymer Chemistry 2015, 53, 1464-1473.

[25]     Guo, Y.; Gao, X.*; Luo, Y.*, Mechanical Properties of Gradient Copolymers of Styrene and n-Butyl Acrylate. Journal of Polymer Science Part B-Polymer Physics 2015, 53, 860-868.

[26]     Gao, X.*; Sheng, W.; Wang, Y.; Lin, Y.; Luo, Y.; Li, B.-G., Polyethylene battery separator with auto-shutdown ability, thermal stability of 220 °C, and hydrophilic surface via solid-state ultraviolet irradiation. Journal of Applied Polymer Science 2015, 132.

[27]     Zhu, Y.; Bi, S.; Gao, X.; Luo, Y.*, Comparison of RAFT Ab Initio Emulsion Polymerization of Methyl Methacrylate and Styrene Mediated by Oligo(methacrylic acid-b-methyl methacrylate) Trithiocarbonate Surfactant. Macromolecular Reaction Engineering 2015, 9, 503-511.

[28]     Guo, Y.; Zhang, J.; Xie, P.; Gao, X.*; Luo, Y.*, Tailor-made compositional gradient copolymer by a many-shot RAFT emulsion polymerization method. Polymer Chemistry 2014, 5, 3363-3371.

[29]     Huang, J.; Zhao, S.; Gao, X.; Luo, Y.*; Li, B., Ab Initio RAFT Emulsion Copolymerization of Styrene and Acrylonitrile. Industrial & Engineering Chemistry Research 2014, 53, 7688-7695.

[30]     Huang, J.; Zhao, S.; Gao, X.; Luo, Y.*; Li, B., RAFT Ab Initio Emulsion Polymerization of Styrene Using Poly(acrylic acid)-b-polystyrene Trithiocarbonate of Various Structures as Mediator and Surfactant. Macromolecular Reaction Engineering 2014, 8, 696-705.

[31]     Luo, Y.; Guo, Y.; Gao, X.*; Li, B.-G.; Xie, T., A General Approach Towards Thermoplastic Multishape-Memory Polymers via Sequence Structure Design. Advanced Materials 2013, 25, 743-748.

[32]     Luo, Y.; Wang, A.-N.; Gao, X.*, Pushing the mechanical strength of PolyHIPEs up to the theoretical limit through living radical polymerization. Soft Matter 2012, 8, 1824-1830.

[33]     Luo, Y.; Wang, A.-N.; Gao, X.*, Miniemulsion template polymerization to prepare a sub-micrometer porous polymeric monolith with an inter-connected structure and very high mechanical strength. Soft Matter 2012, 8, 7547-7551.

[34]     Ye, X.; Luo, Y.; Gao, X.*; Zhu, S.*, Design and evaluation of a thermochromic roof system for energy saving based on poly(N-isopropylacrylamide) aqueous solution. Energy and Buildings 2012, 48, 175-179.

[35]     Zhou, D.; Gao, X.; Wang, W. J.; Zhu, S.*, Termination of Surface Radicals and Kinetic Modeling of ATRP Grafting from Flat Surfaces by Addition of Deactivator. Macromolecules 2012, 45, 1198-1207.

[36]     Gao, X.; Zhu, S.*, Modeling Analysis of Chain Transfer in Reversible Addition-Fragmentation Chain Transfer Polymerization. Journal of Applied Polymer Science 2011, 122, 497-508.

[37]     Feng, W.; Gao, X.; McClung, G.; Zhu, S.*; Ishihara, K.; Brash, J. L., Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: In vitro interactions with plasma proteins and platelets. Acta Biomaterialia 2011, 7, 3692-3699.

[38]     Gao, X.; Zhu, S.*; Sheardown, H.; Brash, J. L., Nanoscale patterning through self-assembly of hydrophilic block copolymers with one chain end constrained to surface. Polymer 2010, 51, 1771-1778.

[39]     Gao, X.; Feng, W.; Zhu, S.*; Sheardown, H.; Brash, J. L., Kinetic Modeling of Surface-Initiated Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering 2010, 4, 235-250.

[40]     Gao, X.; Kucerka, N.; Nieh, M.-P.; Katsaras, J.; Zhu, S.*; Brash, J. L.; Sheardown, H., Chain Conformation of a New Class of PEG-Based Thermoresponsive Polymer Brushes Grafted on Silicon as Determined by Neutron Reflectometry. Langmuir 2009, 25, 10271-10278.

[41]     Gao, X.; Feng, W.; Zhu, S.*; Sheardown, H.; Brash, J. L., A facile method of forming nanoscale patterns on poly(ethylene glycol)-based surfaces by self-assembly of randomly grafted block copolymer brushes. Langmuir 2008, 24, 8303-8308.